
Secondly Quantized Multi-Con�gurational Approach

for Atomic Databases

Gediminas Gaigalas and Zenonas Rudzikas

Institute of Theoretical Physics and Astronomy,

A. Go�stauto 12, Vilnius 2600, Lithuania

1 Introduction

Studies of the structure of atoms and ions (ultracold to relativistic included) as well as their two-
body interactions with photons, electrons and other particles require accurate methods for the
description of such objects.

In order to obtain accurate values of atomic quantities it is necessary to account for relativistic
and correlation e�ects. Relativistic e�ects may be taken into account as Breit-Pauli corrections
or in a fully relativistic approach. In both cases for complex atoms and ions, a considerable part
of the e�ort must be devoted to integrations over spin-angular variables, occurring in the matrix
elements of the operators under consideration.

Many existing codes for integrating are based on a scheme by Fano [1]. The integrations over
spin-angular variables in this case constitute a considerable part of the problem, especially when
atoms with many open shells are treated, and the operators are not trivial. In the papers of
Gaigalas et al. [2],[3], an e�cient approach for �nding matrix elements of any one- and two-particle
atomic operator between complex con�gurations is suggested. It is free of shortcomings of previous
approaches. This approach allows one to generate fairly accurate databases of atomic parameters
(Froese Fischer et al. [4],[5]).

Further development of the approaches by Gaigalas et al. [2],[3] for the spin-spin and spin-other-
orbit relativistic corrections in the Breit-Pauli approximation is presented in this paper.

2 Matrix Elements Between Complex Con�gurations

According to the approach of Gaigalas et al. [3], a general expression of the submatrix element for
any two-particle operator between functions with u open shells can be written as follows:
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Thus, to calculate the spin-angular part of a submatrix element of this type, one has to obtain:

1. The recoupling matrix R
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terms of just 6j- and 9j-coe�cients.
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for tensorial products of cre-

ation/annihilation operators that act upon a particular electron shell. So, all the advantages
of tensorial algebra and quasispin formalism (Rudzikas [6]) may be e�ciently exploited in the
process of their calculation.

3. The phase factor �.
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which is proportional to the two-electron submatrix element of

operator bG.
Further development of this approach for the spin-spin and spin-other-orbit relativistic correc-

tions in the Breit-Pauli approximation is presented in the following section.

3 The Spin-Spin and Spin-Other-Orbit Operators

The spin-spin operator Hss itself contains tensorial structure of two di�erent types, summed over
k:
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Their submatrix elements are:

�
ni�inj�j




H(k+1k�12;112)
ss




ni0�i0nj0�j0

�
=

3p
5

q
(2k + 3)(5) �

�
�
li




C(k+1)



 li0��lj 


C(k�1)




 lj0

�
Nk�1 �nilinjlj; ni0 li0nj0lj0

�
; (3)

�
ni�inj�j




H(k�1k+12;112)
ss




ni0�i0nj0�j0

�
=

3p
5

q
(2k + 3)(5) �

�
�
li




C(k�1)



 li0��lj 


C(k+1)




 lj0

�
Nk�1 �njljnili; nj0lj0ni0li0

�
; (4)

where we use a shorthand notation (2k + 3)(5) � (2k + 3) (2k + 2) (2k + 1) (2k) (2k � 1) and radial
integral in (3), (4) is de�ned as in Glass and Hibbert [7]:
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where �(x) is a Heaviside step-function,
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The spin-other-orbit operator Hsoo itself contains tensorial structure of six di�erent types,
summed over k:
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Their submatrix elements are:�
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The radial integrals in (8)-(10) are (see Glass and Hibbert [7]):
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Now we have all we need (the operators for tensorial structure and their submatrix elements)
for obtaining the value of a matrix element of these operators for any number of open shells in bra
and ket functions. This lets us exploit all advantages of the approach by Gaigalas et al. [3].

The spin-spin and spin-other-orbit operators itself generally contain tensorial structure of several
di�erent types. Therefore the expression (1) must be used separately for each possible tensorial
structure for performing spin-angular integrations according to [3]. Each type of tensorial structure

is associated with a di�erent type of recoupling matrix R
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4 Conclusions

The tensorial forms of the general secondly quantized spin-spin interaction operator (2) and spin-
other-orbit interaction operator (7) and its submatrix elements ( for spin-spin interaction expres-
sions (3), (4) and for spin-other-orbit expressions (8), (9) and (10)) are presented. In calculating
its matrix elements between functions with u open shells this allows to exploit all the advantages
of method by Gaigalas et al. [3]:

1. to obtain both diagonal and o�-diagonal elements with respect to the con�guration matrix
elements in a uni�ed approach,

2. to use in practical applications the tables of submatrix elements of standard quantities, which
here are both the coordinate representation and the occupation number representation ten-
sorial operators,

3. to apply the quasispin formalism for the occupation numbers parts and make use of it,

4. to make use of having recoupling matrices simpler than in other known approaches.
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